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1. Introduction

The balanced vortex model (BVM) of Eliassen [1] studied in [2–5] describes circularly symmetric atmospheric flows in
gradient balance. As such, it is a useful theoretical tool for studying the basic dynamics of hurricanes. It is similar to the sem-
igeostrophic model [6], but more complicated due to the cylindrical coordinate and nonlinear balance condition. When for-
mulated in appropriate coordinates (see Section 2.2) the model reduces to a simple predictive (time-dependent) equation for
the potential vorticity, and a diagnostic (time-independent) equation of the Monge-Ampere type, from which the corre-
sponding mass and wind fields may be determined. This latter equation is referred to as the invertibility relation; an efficient
and robust solution method for this equation is the focus of this paper.

Schubert and Alworth [4] solved the invertibility relation on a single grid using point relaxation; however, the conver-
gence was quite slow and thousands of iterations were required. In contrast, Fulton [7] developed a multigrid solver for
the related but simpler semigeostrophic invertibility relation which achieved ‘‘typical multigrid efficiency”, i.e., solution
in the work of 5–7 fine-grid relaxation sweeps. The goal of this paper is to extend this multigrid method to develop an effi-
cient and robust solver for the BVM invertibility relation. The paper is organized as follows. Section 2 reviews the formula-
tion of the model, and relaxation schemes appropriate for this problem are detailed in Section 3. Section 4 describes the test
problem, and numerical results are given in Section 5 comparing the single grid and multigrid methods. The problem be-
comes harder to solve as the strength of the forcing increases; an adaptive algorithm which combines the continuation
and full multigrid methods is presented in Section 6 and shown to be efficient and robust. Section 7 summarizes our
conclusions.
. All rights reserved.
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2. Model description

A particularly simple formulation of the BVM was introduced in [4], using potential radius and potential temperature as
coordinates. In this section we review this formulation in order to put the invertibility relation (10) into context. We also
introduce a new form of the inner boundary condition and give the details of the discretization.

2.1. Balanced vortex model

Consider the motion of a circularly symmetric vortex, expressed in cylindrical coordinates with r as the radial coordinate
and horizontal velocity components u and v in the radial and tangential directions, respectively. We assume the horizontal
scale is such that the curvature of the Earth can be neglected and the corresponding Coriolis parameter f can be regarded as
constant. Rather than using physical height for the vertical coordinate, we use the potential temperature h, defined as the
absolute temperature times the factor ðp0=pÞj, where p is the pressure, p0 is a constant reference pressure, and j ¼ 2=7. Since
h is the temperature which a parcel of air would have if it were moved adiabatically to where p ¼ p0, it is conserved in adi-
abatic flow, and its use as a coordinate simplifies the equations of motion. In this coordinate system the total derivative (fol-
lowing the motion) is D=Dt ¼ @=@t þ u@=@r þ _h@=@h and _h ¼ Dh=Dt is the vertical component of velocity.

The vortex is assumed to be in gradient and hydrostatic balance, i.e., the tangential and vertical components of the
momentum equation are given by
f þ v
r

� �
v ¼ @M

@r
; ð1Þ
and
@M
@h
¼ P: ð2Þ
Here P ¼ cpðp=p0Þ
j (with cp the specific heat at constant pressure), and the gradient of the Montgomery potential

M ¼ hPþ / (where / is the geopotential) plays the role of the pressure gradient. The gradient balance (1) eliminates grav-
ity-inertia waves but is more accurate than the geostrophic balance used in the quasigeostrophic and semigeostrophic mod-
els [8].

In the absence of radial forcing, absolute angular momentum is conserved and the potential radius R, defined (see [2]) by
1
2

fR2 ¼ rv þ 1
2

fr2
; ð3Þ
is constant following the motion. More generally, we assume that the radial forcing _R ¼ DR=Dt (here identified as ‘‘friction”)
is specified. Similarly, we assume that the vertical velocity _h ¼ Dh=Dt (here identified as ‘‘heating”) is specified. Finally, con-
servation of mass is expressed in terms of the pseudodensity r ¼ �@p=@h by the continuity equation
Dr
Dt
þ r @ðruÞ

r@r
þ @

_h
@h

 !
¼ 0: ð4Þ
By differentiating (3) one can derive an equation for the absolute vorticity g ¼ f þ v=r þ @v=@r. Combining this with the
continuity equation (4) yields
Dq
Dt
¼ 1

r
@

r@r
ðfR _RÞ þ q

@ _h
@h
; ð5Þ
where q ¼ g=r is the potential vorticity. In principle, if q were predicted using (5), since the mass and wind fields satisfy the
balance (1) they could be recovered from q, which combines them. In practice this will not work, since the total derivative
involves the radial velocity u, which is unbalanced and not predicted.

2.2. Coordinate transformation

The model is simplified considerably by interchanging the roles of r and R, transforming from ðr; h; tÞ to ðR;H; TÞ. Here
H ¼ h and T ¼ t, with the new symbols introduced to distinguish partial derivatives @=@h and @=@t at fixed r from partial
derivatives @=@H and @=@T at fixed R. Introducing new dependent variables v�;M�, and C defined by
Rv� ¼ rv ; M� ¼ M þ 1
2

v2; C ¼ dP
dp
¼ jP

p
; ð6Þ
the balance assumptions (1) and (2) transform to
f 2v�
f � 2v�=R

¼ @M�

@R
; ð7Þ
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and
@M�

@H
¼ P: ð8Þ
The potential vorticity equation (5) transforms to the predictive equation
@r�

@T
þ @ðR

_Rr�Þ
R@R

þ @ð
_hr�Þ
@h

¼ 0; ð9Þ
for the potential pseudodensity r� ¼ fr=g, which is the (scaled) reciprocal of the potential vorticity. This equation contains
advection only by the forcings _R and _h, which are regarded as known; thus, the coordinate transformation has rendered
the (unbalanced) radial velocity component u implicit. Consequently, (9) may be solved analytically in many cases (see
Section 4).

Since the balanced wind and mass fields are combined in r�, by the invertibility principle [9] they can be recovered from
r�. This requires solving the invertibility relation [4]
f 2 � R3 @

@R
R�3 @M�

@R

� �� �
@2M�

@H2 þ
@2M�

@R@H

 !2

þ Cr� f þ 2
f
@M�

R@R

� �2

¼ 0; ð10Þ
for M�, where C depends on M� via (6) and (8). The appearance of the R3 and R�3 factors in the radial derivative term is a
consequence of the coordinate transformation. Once M� is obtained from (10)—in which r� plays the role of the forcing—
the balanced wind and mass fields may be obtained from (7) and (8).

Eq. (10) is a Monge-Ampere equation [10], and is elliptic since C > 0 and r� > 0. It is similar to the semigeostrophic
invertibility relation solved in [7], but more complicated due to terms which come from the cylindrical geometry. The goal
of this paper is to demonstrate an efficient and robust method for its numerical solution.

It is convenient to express M� in terms of a deviation from a horizontally uniform basic state. To do so, suppose that the
phenomenon being studied is confined in lateral extent so that in the far field (large R), r� and g are independent of R. With
this assumption it can be shown that r� ¼ r and g ¼ f , and that M� is independent of R. The corresponding solution of (10)
and the vertical boundary conditions constitutes a horizontally uniform basic state, the variables of which we denote with
overbars. To compute it, we specify �r as a function of H only and obtain the other fields via
dM�

dH
¼ P; P ¼ cp

�p
p0

� �j

; C ¼ dP
d�p

; �r ¼ � d�p
dH

: ð11Þ
Then in terms of the deviation M0 ¼ M� �M�, the invertibility relation (10) takes the form
f 2 � R3 @

@R
R�3 @M0

@R

� �� �
@2M0

@H2 � Cr0

" #
þ @2M0

@R@H

 !2

þ Cr� f þ 2
f
@M0

R@R

� �2

¼ 0: ð12Þ
For the results reported here we simply take r ¼ r0 ¼ ðpB � pTÞ=ðHT �HBÞ in terms of the (constant) values of H and p at the
domain bottom and top.

2.3. Boundary conditions

We wish to solve (12) on the domain X ¼ ½0;RB� � ½HB;HT �. At the top boundary H ¼ HT , we suppose the pressure p is the
constant value pT , so from (8) we obtain the condition
@M0

@H
¼ 0 at H ¼ HT : ð13Þ
At the bottom boundary H ¼ HB, assuming the geopotential vanishes ð/ ¼ 0Þ, from the definition of M� and (8) we
obtain
f 2 þ 2
R
@M0

@R

� �
H
@M0

@H
�M0

� �
þ 1

2
@M0

@R

� �2

¼ 0 at H ¼ HB: ð14Þ
At the outer boundary ðR ¼ RBÞ we assume that M� ¼ M, so the outer boundary condition is simply
M0 ¼ 0 at R ¼ RB: ð15Þ
At the inner boundary ðR ¼ 0Þ, Schubert and Alworth [4] used the symmetry condition @M0=@R ¼ 0. Here, we use instead
the limiting form of the invertibility relation at R ¼ 0. We refer to (12) as the interior invertibility relation (in the interior
0 < R < RB). Since @M0=@R ¼ 0 at R ¼ 0, we have @2M0=@R@H ¼ 0 at R ¼ 0, and by L’Hôpital’s Rule
lim
R!0

@M0

R@R
¼ @

2M0

@R2 ; ð16Þ
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so
lim
R!0

f 2 � R3 @

@R
R�3 @M0

@R

� �� �
¼ lim

R!0
f 2 � @

2M0

@R2 þ
3@M0

R@R

" #
¼ f 2 þ 2

@2M0

@R2 : ð17Þ
Therefore, taking the limit as R! 0 in (12) yields the inner invertibility relation
Cr0 �
@2M0

@H2 ¼ Cr� 1þ 2
f 2

@2M0

@R2

 !
at R ¼ 0: ð18Þ
2.4. Discretization

The equations are discretized on a grid defined by Ri ¼ iDR ði ¼ 0;1;2; . . . ;NRÞ and Hj ¼ HB þ jDH ðj ¼ �1;
0;1;2; . . . ;NH þ 1Þ, where DR ¼ RB=NR and DH ¼ ðHT �HBÞ=NH. Ghost points at j ¼ �1 and j ¼ NH þ 1 are added in the H-
direction to handle the vertical boundary conditions.

Given the form of the radial derivative term in (12), it is tempting to discretize it in ‘‘flux form”, evaluating the ‘‘flux”
R�3@M0=@R at the midpoints (between grid points). However, it can be shown [11] that the corresponding truncation error
is unbounded as R! 0. Consequently, we follow [4] and expand this term as
R3 @

@R
R�3 @M0

@R

� �
¼ @

2M0

@R2 �
3
R
@M0

@R
; ð19Þ
before discretizing it. The invertibility relation is discretized by using second-order central finite differences. More general
finite difference discretizations are considered in [11] (they give slightly smaller truncation error or solution error, but are
twice as expensive as the discretization discussed here). Following [4], the discrete version of the invertibility relation
becomes
f 2R2
i Ai;jBi;j � C2

i;j

� �
Ci;jD

2
i;jDH2 ¼ r�i;j; i ¼ 1;2; . . . ;NR � 1; j ¼ 0;1; . . . ;NH; ð20Þ

f 2DR2Bi;j

Ci;jDH2 f 2DR2 þ 4M0
iþ1;j � 4M0

i;j

� � ¼ r�i;j; i ¼ 0; j ¼ 0;1; . . . ;NH: ð21Þ
Here,
Ai;j :¼ 2 M0
i;j � ai;j

� �
; ð22Þ

ai;j :¼ 1
2

3DR
2Ri
þ 1

� �
M0

i�1;j �
3DR
2Ri
� 1

� �
M0

iþ1;j � f 2DR2
� �

; ð23Þ

Bi;j :¼ 2 M0
i;j � bi;j

� �
; ð24Þ

bi;j :¼ 1
2

M0
i;jþ1 þM0

i;j�1 � Cjr0DH2
� �

; ð25Þ

Ci;j :¼ 1
4

M0
iþ1;jþ1 �M0

iþ1;j�1 �M0
i�1;jþ1 þM0

i�1;j�1

� �
; ð26Þ

Di;j :¼ f 2RiDRþM0
iþ1;j �M0

i�1;j: ð27Þ
The discrete boundary conditions are
M0
i;NHþ1 ¼ M0

i;NH�1; i ¼ 0;1;2; . . . NR � 1; ð28Þ

M0
i;�1 ¼

2DH
HB

Ri M0
iþ1;0 �M0

i�1;0

� �2

8f 2DR2Ri þ 8DR M0
iþ1;0 �M0

i�1;0

� ��M0
i;0

264
375þM0

i;1; i ¼ 1;2;3; . . . ;NR � 1; ð29Þ

M0
0;�1 ¼ M0

0;1 �
2DH
HB

M0
0;0; ð30Þ
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M0
NR ;j
¼ 0; j ¼ �1;0;1;2; . . . ;NH þ 1: ð31Þ
To solve this (nonlinear) algebraic system, an iterative method is needed.
3. Relaxation

In this section, three relaxation schemes are presented: point relaxation, R-line relaxation, and H-line relaxation. Numer-
ical results are shown in Section 5.

3.1. Point relaxation

Schubert and Alworth [4] solved the discrete invertibility relation (on a single grid) by a point relaxation scheme which
can be formulated as follows. Suppose we have an approximation of M0, but this approximation does not satisfy (20) at a
point ði; jÞ. Keeping the values of M0 at the surrounding points unchanged, we update the value of M0

i;j so that (20) is satisfied
at the point ði; jÞ. Viewed as an equation in the single variable M0

i;j, the equation (20) is quadratic; since Ci;j and Di;j are inde-
pendent of M0

i;j, we can write it in the form
M0
i;j � ai;j

� �
M0

i;j � bi;j

� �
¼ ci;j; ð32Þ
where ci;j ¼ f 2R2
i C2

i;j þ D2
i;jDH2Ci;jr�i;j

� �
= 4f 2R2

i

� �
. Note that ci;j > 0. Solving (32) yields
M0
i;j ¼

1
2

ai;j þ bi;j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðai;j � bi;jÞ2 þ 4ci;j

q� �
: ð33Þ
To ensure the absolute vorticity is positive, we must have M0
i;j � a > 0. Choosing the larger root in (33) (+ sign) will guarantee

this. Thus, the point relaxation scheme for the interior grid point ði; jÞ is
M0
i;j  

1
2

ai;j þ bi;j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðai;j � bi;jÞ2 þ 4ci;j

q� �
; ð34Þ
where i ¼ 1;2;3; . . . ;NR � 1 and j ¼ 0;1;2; . . . ;NH. Similarly, on the inner boundary, solving the discrete equation (21) for M0
i;j

yields
M0
i;j  M0

iþ1;j þ
1
4

f 2DR2 � f 2DR2Bi;j

4Ci;jr�i;j
; ð35Þ
where i ¼ 0 and j ¼ 0;1;2; . . . ;NH.
A relaxation sweep consists of updating M0

i;j by (34) and (35) at interior points in lexicographic order and the inner bound-
ary points, respectively. After updating all interior points and inner boundary points, the ghost points are updated using
(28)–(30). When used as a solution method on a single grid [4], this point relaxation works but the convergence is exceed-
ingly slow.

When used as a smoother in a multigrid method, this point relaxation also performs poorly, since the problem is highly
anisotropic. To see this, the invertibility relation (12) linearized about the basic state given by (11) takes the form
 !
�Cr0
@2M0

@R2 þ
@M0

R@R
� f 2 @

2M0

@H2 ¼ f 2Cðr� � r0Þ: ð36Þ
Considering only the principal (second-order) terms, this problem would appear nearly isotropic on a grid with mesh spacing
ðDR;DHÞ if the ratio k ¼ ðCr0=DR2Þ=ðf 2=DH2Þ is approximately 1. However, using values from [4] gives k� 1 as shown in
Fig. 1, so the coupling is much stronger in the R-direction than in the H-direction. Since k varies strongly with H, changing
the mesh spacing DR or DH to make k � 1 is not possible. Consequently, point relaxation will not work well, a conclusion
confirmed by numerical results (see Section 5). The solution here is to use line relaxation.

3.2. R-line relaxation

Since the equation has strong coupling in the R-direction, R-line relaxation should be used. To formulate this scheme, we

fix a horizontal R-line indexed by j with 0 6 j 6 NH. The values Hj :¼ M0
0;j;M

0
1;j; . . . ;M0

NR ;j

h iT
are regarded as unknowns, and the

values at adjacent R-lines ðj� 1Þ are treated as known. From (21), (20) and (31), the equations to be solved for Hj are
F0;jðHjÞ :¼ f 2DR2B0;j � C0;jr�0;jDH2 f 2DR2 þ 4M0
1;j � 4M0

0;j

h i
¼ 0; ð37Þ
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Fig. 1. Anisotropy of the linearized invertibility relation.

Y. Chen, S.R. Fulton / Journal of Computational Physics 229 (2010) 2236–2248 2241
Fi;jðHjÞ :¼ f 2R2
i Ai;jBi;j � C2

i;j

� �
� Ci;jr�i;jDH2D2

i;j ¼ 0; i ¼ 1;2; . . . ;NR � 1; ð38Þ

FNR ;jðHjÞ :¼ M0
NR ;j
¼ 0: ð39Þ
We write the nonlinear system (37)–(39) in vector form as FjðHjÞ ¼ 0 and solve it (approximately) by one iteration of New-
ton’s method. Additional iterations and modified Newton’s methods are not needed, since the role of relaxation here is not to
solve the problem but only to smooth the error [12, sec. 5.4]. Computing the Newton iteration is simple because the Jacobian
matrix of the vector function Fj is tridiagonal and diagonally dominant. After doing relaxation on each R-line
ðj ¼ 0;1;2; . . . ;NHÞ, the top and bottom boundary conditions (28)–(30) are applied to set the vertical ghost point values.

3.3. H-line relaxation

When the strong coupling only occurs in the R-direction, R-line relaxation will work fine. However, in (12), the coeffi-
cients are not constant but varying, and it is possible that strong coupling of unknowns may appear in both the R-direction
and the H-direction when the nonlinear terms dominate. In this case, H-line relaxation is required. Compared to R-line
relaxation, H-line relaxation is more complicated since the operators are different on the inner boundary and in the interior.

For a given vertical H-line indexed by i with 0 6 i < NR, the values Vi :¼ M0
i;�1;M

0
i;0; . . . ;M0

i;NHþ1

h iT
ði ¼ 0;1;2; . . . ;NR � 1Þ

are viewed as unknowns, and the values at adjacent H-lines ði� 1Þ are regarded as known. From (30), (21) and (28), the
equations to be solved for V0 (the inner boundary, i ¼ 0) are
G0;�1ðV0Þ ¼ HBM0
0;1 �HBM0

0;�1 � 2DHM0
0;0 ¼ 0; ð40Þ

G0;jðV0Þ ¼ f 2DR2B0;j � C0;jr�0;jDH2 f 2DR2 þ 4M0
1;j � 4M0

0;j

h i
¼ 0; j ¼ 0;1; . . . ;NH; ð41Þ

G0;NHþ1ðV0Þ ¼ M0
0;NHþ1 �M0

0;NH�1 ¼ 0: ð42Þ
For the interior ði ¼ 1;2;3; . . . ;NR � 1Þ, from (29), (20) and (28), the equations to be solved for Vi are
Gi;�1ðViÞ ¼ 4RiDR2f 2 þ 4DR M0
iþ1;0 �M0

i�1;0

� �h i
HB M0

i;1 �M0
i;�1

� �
� 2DHM0

i;0

h i
þ RiDH M0

iþ1;0 �M0
i�1;0

� �2
¼ 0; ð43Þ

Gi;jðViÞ ¼ f 2R2
i Ai;jBi;j � C2

i;j

� �
� Ci;jr�i;jDH2D2

i;j ¼ 0; j ¼ 0;1; . . . ;NH; ð44Þ

Gi;NHþ1ðViÞ ¼ M0
i;NHþ1 �M0

i;NH�1 ¼ 0: ð45Þ
As before, the nonlinear system GiðViÞ ¼ 0 is solved approximately by one Newton iteration; the Jacobian matrices are again
tridiagonal and diagonally dominant (once the ghost-point values are eliminated using the boundary conditions). For our
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problem, H-line relaxation will be used only in combination with R-line relaxation, with one alternating line relaxation sweep
consisting of one R-line sweep followed by one H-line sweep.1
4. Test problem

Following Schubert and Alworth [4] we can solve the predictive equation (9) analytically by the method of characteristics
as follows. Suppose the flow is frictionless ð _R ¼ 0Þ and the heating is given by
1 We
less effe

2 The
_h ¼ QðRÞFðzÞ; ð46Þ
where zðHÞ ¼ pðH�HBÞ=ðHT �HBÞ with QðRÞ and FðzÞ to be specified later. Then (9) becomes
@

@s
ð _hr�Þ þ FðzÞ @

@z
ð _hr�Þ ¼ 0; ð47Þ
where sðR; TÞ ¼ pQðRÞT=ðHT �HBÞ. Thus, _hr� is constant along characteristic curves defined by
dz
FðzÞ ¼ ds: ð48Þ
Therefore, the characteristic through ðz; sÞ and ðz0;0Þ satisfies
_hðz; sÞr�ðz; sÞ ¼ _hðz0;0Þr�ðz0; 0Þ ¼ r0
_hðz0; 0Þ; ð49Þ
where in the last step we have assumed that the flow is motionless at T ¼ 0 so r� ¼ r0 at s ¼ 0. Therefore, the forcing takes
the form
r�ðz; sÞ ¼ r0
Fðz0Þ
FðzÞ : ð50Þ
For the vertical profile FðzÞ ¼ sinðzÞ used by Schubert and Alworth [4] (we will consider other profiles in Section 6), by
integration of (48) the solution is
z0ðz; sÞ ¼ 2 arctan½e�s tanðz=2Þ�: ð51Þ
The resulting forcing of the invertibility relation is therefore
r�ðz; sÞ ¼ r0

e�s z ¼ 0;
ðsin zÞ�1 sin½2 arctanðe�s tanðz=2ÞÞ� 0 < z < p;
es z ¼ p:

8><>: ð52Þ
For the results reported here we use the values HB ¼ 300 K;HT ¼ 360 K; p0 ¼ pB ¼ 1000 mb; pT ¼ 100 mb, and f ¼ 10�4 s�1.
The radial profile of heating is given by QðRÞ ¼ Q 0e�ðR=R0Þ2 with R0 ¼ 250 km and Q0 ¼ 30 K=day. Unless otherwise specified,
each iterative method is halted when the current residual norm is less than 10�6 times the initial residual norm.
5. Continuation-multigrid methods

The forcing specified above depends on the time T; when T is large, the forcing is stronger so the invertibility relation is
more nonlinear and harder to solve. Consequently, we solve the problem from time T ¼ 0 to T ¼ 96 h based on a continua-
tion method as follows. The time is divided into a time series Ti ¼ iDT; i ¼ 0;1;2 . . ., with DT ¼ 2 h. The solution at time Ti is
used as the initial solution at time Tiþ1. At each time step, the problem is solved by a multigrid method or on a single grid.
First, we reproduced the results in [4] by point relaxation on a single grid with grid size 48� 32. After several thousand iter-
ations (at each Ti), it took 233735 seconds2 to obtain the solution at T ¼ 96 h. The solutions obtained for M� and its derivatives
match those in [4] (e.g., see Fig. 7 below). Multigrid methods [13,14] can give much faster convergence with a rate independent
of the mesh size. Using multigrid V-cycles to solve at each time Ti in the continuation method gives the Continuation-Multigrid
(C-MGV) algorithm described below.

The coarse grids are set up by doubling mesh size in both directions; in our tests the coarsest grid is ðNR;NHÞ ¼ ð3;2Þ. The
full approximation scheme (FAS) is used (since the problem is nonlinear) and V(2,1) cycles are used. The fine-to-coarse grid
transfers (restriction) are injection for the solution and full weighting for the residual, and the coarse-to-fine transfer (pro-
longation) is bilinear interpolation for the correction (and bicubic interpolation for the FMG solution transfer in the next
section).
also investigated semi-coarsening, i.e., R-line relaxation with coarsening in H only; however, computational results (not shown) indicate this is much
ctive for this problem.
solution times in this paper are reported for the algorithms coded in Matlab on an IBM ThinkPad T60 with Intel Core(TM) 2 Processor T7400.
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Point relaxation is much faster with multigrid than on a single grid, taking only 7796 seconds to get the solution. How-
ever, this result is far from optimal. We can measure the performance of the multigrid method by the average numerical
convergence factor per sweep lN :¼ ðkrmk=kr0kÞ1=½mðm1þm2Þ�, where k 	 k is the discrete L2 norm, r0 is the residual before any
V-cycles (the initial guess is zero at the beginning or a previous approximate solution obtained in the method) and rm is
the residual after m multigrid Vðm1; m2Þ cycles. The number m of V-cycles depends on the stopping criterion (see Section 6);
typically, 3–6 cycles were needed. The convergence factors are close to 1 (see Fig. 2), and deteriorate as time (forcing
strength) increases.

As indicated in Section 3.1, this poor performance is due to the fact that the problem is highly anisotropic. This conclusion
is confirmed by the slight improvement obtained when the mesh aspect ratio is changed (see Fig. 2). Since the strong cou-
pling lies in the R-direction, R-line relaxation is appropriate; this reduces the solution time to only 49 seconds. This is 4770
times faster than point relaxation on a single grid, and 159 times faster than point relaxation with multigrid methods.

Although R-line relaxation is effective for small T, when T is large (T > 82 h), the convergence factor deteriorates, as
shown in Fig. 3. The BVM invertibility relation has variable coefficients which depend on the solution, so one possible cause
of the poor convergence in R-line relaxation is that with strong forcing the strong coupling may occur in both the R-direction
and the H-direction. In this case, alternating line relaxation may help. From Fig. 3, we can see that better convergence factors
are obtained when using the alternating line relaxation, especially at large time. At time T ¼ 96 h, the convergence factor is
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Fig. 2. Numerical convergence factor per sweep for point relaxation.
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Table 1
Time (in seconds) to solve the invertibility relation to T ¼ 96 h using the C-MGV algorithm.

Grid size R-line Alternating line

48� 32 49 32
96� 64 68 51

192� 128 302 241
384� 256 1517 1193
768� 512 6268 5406

Fig. 4. Basic choices in the C-FMG algorithm at level lk and time Tk .
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0.91 using R-line relaxation only, while alternating line relaxation gives the convergence factor 0.58. Although alternating
line relaxation takes twice as much work per sweep as R-line relaxation, the improvement in convergence more than makes
up for this, as shown in Table 1.
So, from now on we consider the alternating line relaxation only.
6. Adaptive continuation-FMG methods

In the C-MGV algorithm described above, the final solution at one time Ti is used as the initial approximation for multi-
grid cycling at the next time Tiþ1. In contrast, the full multigrid (FMG) method obtains the initial approximation from a coar-
ser grid. For this problem, the FMG method works for small time (e.g., T 6 46 h on a 48� 32 grid). However, for large time,
the FMG method fails, since the forcing is too strong. In this section we combine the FMG method with continuation, a com-
bination we call the C-FMG algorithm. The algorithm proceeds as follows.

Suppose the BVM invertibility relation is to be solved on an NR � NH grid (level l ¼ 1) at time T ¼ TF as shown in Fig. 4. The
algorithm is initialized with a solution on the coarsest grid ðl ¼ LÞ at some time T1 (determined by starting with T ¼ TF and
dividing T by two repeatedly until the problem can be solved). From this point, the algorithm steps through times T and lev-
els l toward the goal T ¼ TF ; l ¼ 1. The solutions so obtained are indexed by k ¼ 1;2; . . ., storing the level lk, time Tk, and cor-
responding solution (in case the algorithm needs to ‘‘back up”). The basic idea is to work on as coarse a grid as possible (l
large) for as long as possible (T large), using continuation to move forward in time T, and only using FMG (to the next finer
grid) when continuation fails or the final time TF is reached.3

The full details of the algorithm are given in Fig. 5, where the numbered locations reference the discussion below. To illus-
trate how the algorithm works, suppose that the problem has been solved (by multigrid V-cycles) on level lk at time Tk

(marked r in Fig. 5). Then as shown in Fig. 4 the approach is as follows:


 Try continuation (marked s) to the final time TF , using the solution from the previous time as the initial approximation
(make DT smaller if needed, marked t).


 If continuation fails or T ¼ TF , try FMG, i.e., move to the next finer grid using bicubic interpolation (marked u).

 If FMG fails, back up to a previous solution, on the same level if possible (point p1) or a coarser level if necessary (point p2)

and try FMG from there (marked v).

In this algorithm, ‘‘T small” means T < 0:1 h, and ‘‘DT small” means DT < 0:01 h. In each case the multigrid cycling starts
with an initial approximation from the previous solution, either at a previous time (continuation) or coarser level (FMG).
Alternatively, one could solve for the change from the previous solution and/or use an F-cycle [15].

To determine whether the problem is solved on a given grid, two convergence criteria are considered. One is that mul-
tigrid cycling is halted when the residual norm is less than 10�6 times the initial residual norm on that grid; we refer to this
3 If the solution is desired on the finest level at more than one time, this combination of continuation and FMG can be extended accordingly.



Fig. 5. The C-FMG algorithm.
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as the adaptive C-FMG algorithm (AC-FMG). The other uses the same criterion on the coarsest grid, but on finer grids the
problem is considered solved when the residual norm is less than half of the estimated truncation error norm. For this prob-
lem that estimate on grid level l is
Table 2
Time (i

Grid

48
96

192
384
768

1536
sl � 1
3

f̂ lþ1 �bIlþ1
l f l

� �
;

where f l is the fine-grid forcing, f̂ lþ1 is the FAS right-hand side on the next coarser grid (level lþ 1), and bI lþ1
l denotes transfer

from fine to coarse by injection; for details, see [16]. With this stopping criterion, the method is referred to as the fully adap-
tive C-FMG algorithm (FAC-FMG). In either case, if the convergence criterion is not satisfied in 15 V-cycles (typically 3–6 are
n seconds) to solve the invertibility relation to T ¼ 96 h using three different algorithms.

size C-MGV AC-FMG FAC-FMG

� 32 32 6 4
� 64 51 10 6
� 128 241 20 9
� 256 1193 62 20
� 512 5406 221 61
� 1024 Failed 775 229
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enough), or the residual norm on the grid increases by a factor of 103, the solution at that time and level is deemed to have
failed, and the algorithm tries another time or level as described above.

The numerical results of the C-FMG algorithms are listed in Table 2. They work on very high resolution, while the C-MGV
may fail. The AC-FMG works 5 times faster than the C-MGV (the same stopping criterion used) on a low resolution grid;
when the resolution is high, the AC-FMG works 12-24 times faster than the C-MGV. The FAC-FMG is even faster, showing
that the convergence tolerance ð10�6Þ used in the other two algorithms is smaller than needed. So, from now on we will focus
on the FAC-FMG.

One important feature of the FAC-FMG is that the method (continuation or FMG) and time are chosen automatically by
the algorithm itself, which should make it more robust. To test the robustness, we solved the invertibility relation for differ-
ent forcings. All the experiments done so far were based on the heating profile FðzÞ ¼ sinðzÞ used by Schubert and Alworth
[4]. Since F 0ðzÞ–0 near the top of the domain ðz ¼ pÞ, this heating generates an intense upper-level anticyclone (e.g., Fig. 7,
top right panel). Since this is physically unrealistically [17], we now consider the profile FðzÞ ¼ azðz� bpÞ2, where a and b are
constants. With b � 1 this profile satisfies F 0ðzÞ � 0 near the top ðz ¼ pÞ, as shown in Fig. 6 for the choices of a and b given in
Table 3. The resulting solution is more realistic (see Fig. 7, bottom right panel).

To derive the corresponding forcing r�, we can integrate (48) to show that the characteristic through ðz; sÞ and ðz0;0Þ
satisfies
 8
z0ðz; sÞ ¼
0 z ¼ 0;
bpw=ð1þwÞ 0 < z < p;
p z ¼ p;

><>: ð53Þ
where w ¼ wðz; sÞ is the inverse of
� �

zðwÞ ¼ w

bp�w
exp

w
bp�w

� ab2p2s ; ð54Þ
which can be computed using the Lambert W-function [18,19]. The corresponding forcing r� is then given by (50).
Fig. 7 shows the normalized forcing r�=r0 and corresponding tangential wind v, computed from the solution M� of the

invertibility relation via (6), (7) and (3) for profiles A and D of Fig. 6. Profile D is more realistic in that the upper-level anti-
cyclone is weaker and does not extend to the top boundary. However, this case is also considerably harder to compute, since
r�=r0 � 1 near the corner ðR;HÞ ¼ ð0;HBÞ, making the invertibility relation nearly non-elliptic there. This is reflected in the
time required to compute the solution as shown in Table 3. When the resolution is low, the C-MGV algorithm can also solve
the problem—provided that the time step is small enough. But the appropriate time step is unknown unless many times are
tried. After many experiments, the time step needed is 2 h for profiles A and B, 1 h for profile C, and 0.02 h for profile D.
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Fig. 6. Vertical profiles of heating as given in Table 3.



Table 3
Time (in seconds) to solve the invertibility relation to T ¼ 96 h for different heating profiles.

48� 32 grid 192� 128 grid

Heating profile FðzÞ C-MGV FAC-FMG C-MGV FAC-FMG

A: sinðzÞ 32 4 241 9

B: zðz� pÞ2=16 28 1 329 4

C: zðz� 1:02pÞ2=12 31 2 377 5

D: zðz� 1:05pÞ2=8 2386 14 30,764 283
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Fig. 7. Results for heating profiles A (top two panels) and D (bottom two panels). The left panels show the normalized forcing r�=r0 with contours labeled
by log2ðr�=r0Þ. The right panels show the tangential wind v in m/s.
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7. Summary and conclusions

Efficient and robust multigrid methods have been developed for the invertibility relation of the BVM. Since the problem is
highly anisotropic, and the strong coupling occurs in both directions, the numerical results show that the alternating line
relaxation is a good smoother for this problem. A continuation-multigrid algorithm (C-MGV) which combines continuation
in time (strength of forcing) and multigrid V-cycles works well, solving the problem several orders of magnitude faster than
single-grid relaxation.

For small time (weak forcing), the problem can be solved by the full multigrid (FMG) method directly, but for large time
(strong forcing), the FMG method will fail. However, combining continuation and FMG yields an algorithm which is efficient
and robust. The fully adaptive version (the FAC-FMG algorithm) described here chooses the method (continuation or FMG)
and size of continuation step automatically, and determines the convergence tolerance based on the truncation error as esti-
mated during multigrid processing. Numerical results show this algorithm is quite fast and works for different cases of forc-
ing, including some for which the problem is nearly non-elliptic. This method should extend to other balanced models with
invertibility relations of the Monge-Ampere type.
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